首页> 外文OA文献 >Biology, Methodology or Chance? The Degree Distributions of Bipartite Ecological Networks
【2h】

Biology, Methodology or Chance? The Degree Distributions of Bipartite Ecological Networks

机译:生物学,方法论还是机会?双向生态网络的度分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The distribution of the number of links per species, or degree distribution, is widely used as a summary of the topology of complex networks. Degree distributions have been studied in a range of ecological networks, including both mutualistic bipartite networks of plants and pollinators or seed dispersers and antagonistic bipartite networks of plants and their consumers. The shape of a degree distribution, for example whether it follows an exponential or power-law form, is typically taken to be indicative of the processes structuring the network. The skewed degree distributions of bipartite mutualistic and antagonistic networks are usually assumed to show that ecological or co-evolutionary processes constrain the relative numbers of specialists and generalists in the network. I show that a simple null model based on the principle of maximum entropy cannot be rejected as a model for the degree distributions in most of the 115 bipartite ecological networks tested here. The model requires knowledge of the number of nodes and links in the network, but needs no other ecological information. The model cannot be rejected for 159 (69%) of the 230 degree distributions of the 115 networks tested. It performed equally well on the plant and animal degree distributions, and cannot be rejected for 81 (70%) of the 115 plant distributions and 78 (68%) of the animal distributions. There are consistent differences between the degree distributions of mutualistic and antagonistic networks, suggesting that different processes are constraining these two classes of networks. Fit to the MaxEnt null model is consistently poor among the largest mutualistic networks. Potential ecological and methodological explanations for deviations from the model suggest that spatial and temporal heterogeneity are important drivers of the structure of these large networks.
机译:每个物种的链接数分布或程度分布被广泛用作复杂网络拓扑的摘要。已经在一系列生态网络中研究了度分布,这些生态网络包括植物和授粉媒介或种子散布者的互惠二分网络以及植物及其消费者的拮抗二分网络。程度分布的形状(例如遵循指数形式还是幂律形式)通常被认为是构成网络的过程的指示。通常假定二元互惠和对立网络的偏度分布表明,生态或共同进化过程限制了网络中专家和通才的相对数量。我证明,基于最大熵原理的简单零模型不能被拒绝作为此处测试的115个二分生态网络中大多数度分布的模型。该模型需要了解网络中节点和链接的数量,但不需要其他生态信息。在测试的115个网络的230度分布中,有159个(69%)无法拒绝该模型。它在动植物分布上表现同样出色,在115种植物分布中的81种(70%)和动物分布中78种(68%)不能被拒绝。互惠网络和对立网络的程度分布之间存在一致的差异,这表明不同的过程正在限制这两类网络。在最大的互惠网络中,对MaxEnt空模型的拟合一直很差。对模型偏离的潜在生态学和方法学解释表明,时空异质性是这些大型网络结构的重要驱动力。

著录项

  • 作者

    Williams, Richard J.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号